11. Correlation and linear regression

The goal in this chapter is to introduce correlation and linear regression. These are the standard
tools that statisticians rely on when analysing the relationship between continuous predictors and
continuous outcomes.

11.1

Correlations

In this section we'll talk about how to describe the relationships between variables in the data. To do
that, we want to talk mostly about the correlation between variables. But first, we need some data.

11.1.1 The data

Table 11.1: Descriptive statistics for the parenthood data.

variable min max mean median std. dev IQR

Dan's grumpiness 41 91 63.71 62 10.05 14
Dan’s hours slept 4.84 9.00 6.97 7.03 1.02 1.45
Dan’s son’'s hours slept | 3.25 12.07 8.05 7.95 2.07 3.21

Let's turn to a topic close to every parent’s heart: sleep. The data set we'll use is fictitious,
but based on real events. Suppose I'm curious to find out how much my infant son’s sleeping habits
affect my mood. Let's say that | can rate my grumpiness very precisely, on a scale from 0 (not
at all grumpy) to 100 (grumpy as a very, very grumpy old man or woman). And lets also assume
that I've been measuring my grumpiness, my sleeping patterns and my son’s sleeping patterns for
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quite some time now. Let's say, for 100 days. And, being a nerd, I've saved the data as a file
called parenthood.csv. If we load the data into JASP we can see that the file contains four variables
dan.sleep, baby.sleep, dan.grump and day. Note that when you first load this data set JASP may
not have guessed the data type for each variable correctly, in which case you should fix it: dan.sleep,
baby.sleep, dan.grump and day can be specified as continuous variables, and ID is a nominal(integer)
variable.

Next, I'll take a look at some basic descriptive statistics and, to give a graphical depiction of what
each of the three interesting variables looks like, Figure 11.1 plots histograms. One thing to note:
just because JASP can calculate dozens of different statistics doesn't mean you should report all of
them. If | were writing this up for a report, I'd probably pick out those statistics that are of most
interest to me (and to my readership), and then put them into a nice, simple table like the one in
Table 11.1.1 Notice that when | put it into a table, | gave everything “human readable” names. This
is always good practice. Notice also that I'm not getting enough sleep. This isn't good practice, but
other parents tell me that it's pretty standard.
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Figure 11.1: Histograms for the three interesting variables in the parenthood data set.

11.1.2 The strength and direction of a relationship

We can draw scatterplots to give us a general sense of how closely related two variables are. |deally
though, we might want to say a bit more about it than that. For instance, let's compare the relationship
between dan.sleep and dan.grump (Figure 11.2, left) with that between baby.sleep and dan.grump
(Figure 11.2, right). When looking at these two plots side by side, it's clear that the relationship is
qualitatively the same in both cases: more sleep equals less grump! However, it's also pretty obvious
that the relationship between dan.sleep and dan.grump is stronger than the relationship between

!Actually, even that table is more than I'd bother with. In practice most people pick one measure of central tendency,
and one measure of variability only.
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Figure 11.2: Scatterplots showing the relationship between dan.sleep and dan.grump (left) and the
relationship between baby.sleep and dan.grump (right).

baby.sleep and dan.grump. The plot on the left is “neater” than the one on the right. What it feels
like is that if you want to predict what my mood is, it'd help you a little bit to know how many hours
my son slept, but it'd be more helpful to know how many hours | slept.

In contrast, let's consider the two scatterplots shown in Figure 11.3. If we compare the scatterplot
of “baby.sleep v dan.grump” (left) to the scatterplot of “‘baby.sleep v dan.sleep” (right), the overall
strength of the relationship is the same, but the direction is different. That is, if my son sleeps more,
| get more sleep (positive relationship, right hand side), but if he sleeps more then | get less grumpy
(negative relationship, left hand side).

11.1.3 The correlation coefficient

We can make these ideas a bit more explicit by introducing the idea of a correlation coefficient
(or, more specifically, Pearson’s correlation coefficient), which is traditionally denoted as r. The
correlation coefficient between two variables X and Y (sometimes denoted rxy ), which we'll define
more precisely in the next section, is a measure that varies from —1 to 1. When r = —1 it means
that we have a perfect negative relationship, and when r = 1 it means we have a perfect positive
relationship. When r = 0, there's no relationship at all. If you look at Figure 11.4, you can see several
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Figure 11.3: Scatterplots showing the relationship between baby.sleep and dan.grump (left), as
compared to the relationship between baby.sleep and dan.sleep (right).

plots showing what different correlations look like.

The formula for the Pearson’s correlation coefficient can be written in several different ways. | think
the simplest way to write down the formula is to break it into two steps. Firstly, let's introduce
the idea of a covariance. The covariance between two variables X and Y is a generalisation of the
notion of the variance amd is a mathematically simple way of describing the relationship between
two variables that isn’t terribly informative to humans

N
Cov(X,Y) = ﬁ D(Xi=X)(Yi-Y)
i=1

Because we're multiplying (i.e., taking the “product” of) a quantity that depends on X by a quantity
that depends on Y and then averaging?, you can think of the formula for the covariance as an
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Figure 11.4: lllustration of the effect of varying the strength and direction of a correlation. In the left
hand column, the correlations are 0, .33, .66 and 1. In the right hand column, the correlations are 0,

-.33, -.66 and -1.



“average cross product” between X and Y.

The covariance has the nice property that, if X and Y are entirely unrelated, then the covariance
is exactly zero. If the relationship between them is positive (in the sense shown in Figure 11.4) then
the covariance is also positive, and if the relationship is negative then the covariance is also negative.
In other words, the covariance captures the basic qualitative idea of correlation. Unfortunately, the
raw magnitude of the covariance isn’t easy to interpret as it depends on the units in which X and Y
are expressed and, worse yet, the actual units that the covariance itself is expressed in are really weird.
For instance, if X refers to the dan.sleep variable (units: hours) and Y refers to the dan.grump
variable (units: grumps), then the units for their covariance are “hours x grumps”. And | have no
freaking idea what that would even mean.

The Pearson correlation coefficient r fixes this interpretation problem by standardising the co-
variance, in pretty much the exact same way that the z-score standardises a raw score, by dividing
by the standard deviation. However, because we have two variables that contribute to the covari-
ance, the standardisation only works if we divide by both standard deviations.? In other words, the
correlation between X and Y can be written as follows:

?Just like we saw with the variance and the standard deviation, in practice we divide by N — 1 rather than N.
bThis is an oversimplification, but it'll do for our purposes.

By standardising the covariance, not only do we keep all of the nice properties of the covariance
discussed earlier, but the actual values of r are on a meaningful scale: r = 1 implies a perfect positive
relationship and r = —1 implies a perfect negative relationship. I'll expand a little more on this point
later, in Section 11.1.5. But before | do, let's look at how to calculate correlations in JASP.

11.1.4 Calculating correlations in JASP

Calculating correlations in JASP can be done by clicking on the '‘Regression’ - ‘Correlation Matrix’
button. Transfer all four continuous variables across into the box on the right to get the output in
Figure 11.5. Notice that each correlation (denoted ‘Pearson’s r') is paired with a p-value. Clearly,
something is being tested here, but ignore it for now. We'll talk more about that soon!

11.1.5 Interpreting a correlation

Naturally, in real life you don't see many correlations of 1. So how should you interpret a correlation
of, say, r = .47 The honest answer is that it really depends on what you want to use the data for,
and on how strong the correlations in your field tend to be. A friend of mine in engineering once
argued that any correlation less than .95 is completely useless (I think he was exaggerating, even for
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Figure 11.5: A JASP screenshot showing correlations between variables in the parenthood. csv file

engineering). On the other hand, there are real cases, even in psychology, where you should really
expect correlations that strong. For instance, one of the benchmark data sets used to test theories
of how people judge similarities is so clean that any theory that can't achieve a correlation of at least
.9 really isn't deemed to be successful. However, when looking for (say) elementary correlates of
intelligence (e.g., inspection time, response time), if you get a correlation above .3 you're doing very
very well. In short, the interpretation of a correlation depends a lot on the context. That said, the
rough guide in Table 11.2 is pretty typical.

However, something that can never be stressed enough is that you should always look at the
scatterplot before attaching any interpretation to the data. A correlation might not mean what you
think it means. The classic illustration of this is “Anscombe’s Quartet” (Anscombe 1973), a collection
of four data sets. Each data set has two variables, an X and a Y. For all four data sets the mean value
for X is 9 and the mean for Y is 7.5. The standard deviations for all X variables are almost identical,
as are those for the Y variables. And in each case the correlation between X and Y is r = 0.816. You
can verify this yourself, since | happen to have saved it in a file called anscombe.csv.

You'd think that these four data sets would look pretty similar to one another. They do not. If we
draw scatterplots of X against Y for all four variables, as shown in Figure 11.6, we see that all four
of these are spectacularly different to each other. The lesson here, which so very many people seem
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Table 11.2: A rough guide to interpreting correlations. Note that | say a rough guide. There aren’t
hard and fast rules for what counts as strong or weak relationships. It depends on the context.

Correlation | Strength Direction
-1.0 to -0.9 | Very strong Negative
-0.9 to -0.7 | Strong Negative
-0.7 to -0.4 | Moderate Negative
-0.4 to -0.2 | Weak Negative
-0.2to0 0 Negligible Negative
0to0.2 Negligible Positive
0.2to 0.4 Weak Positive
0.4 to 0.7 Moderate Positive
0.7t0 0.9 Strong Positive
09to 1.0 Very strong Positive

to forget in real life, is “always graph your raw data’ (Chapter 5).

11.1.6 Spearman’s rank correlations

The Pearson correlation coefficient is useful for a lot of things, but it does have shortcomings.
One issue in particular stands out: what it actually measures is the strength of the /inear relationship
between two variables. In other words, what it gives you is a measure of the extent to which the
data all tend to fall on a single, perfectly straight line. Often, this is a pretty good approximation to
what we mean when we say “relationship”, and so the Pearson correlation is a good thing to calculate.
Sometimes though, it isn't.

One very common situation where the Pearson correlation isn't quite the right thing to use arises
when an increase in one variable X really is reflected in an increase in another variable Y, but the
nature of the relationship isn't necessarily linear. An example of this might be the relationship between
effort and reward when studying for an exam. If you put zero effort (X) into learning a subject then
you should expect a grade of 0% (Y'). However, a little bit of effort will cause a massive improvement.
Just turning up to lectures means that you learn a fair bit, and if you just turn up to classes and
scribble a few things down your grade might rise to 35%, all without a lot of effort. However, you
just don't get the same effect at the other end of the scale. As everyone knows, it takes a /ot more
effort to get a grade of 90% than it takes to get a grade of 55%. What this means is that, if I've
got data looking at study effort and grades, there's a pretty good chance that Pearson correlations
will be misleading.

To illustrate, consider the data plotted in Figure 11.7, showing the relationship between hours
worked and grade received for 10 students taking some class. The curious thing about this (highly
fictitious) data set is that increasing your effort always increases your grade. It might be by a lot
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Figure 11.6: Anscombe’s quartet. All four of these data sets have a Pearson correlation of r = .816,
but they are qualitatively different from one another.

or it might be by a little, but increasing effort will never decrease your grade. If we run a standard
Pearson correlation, it shows a strong relationship between hours worked and grade received, with a
correlation coefficient of 0.91. However, this doesn't actually capture the observation that increasing
hours worked always increases the grade. There's a sense here in which we want to be able to say
that the correlation is perfect but for a somewhat different notion of what a “relationship” is. What
we're looking for is something that captures the fact that there is a perfect ordinal relationship here.
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Figure 11.7: The relationship between hours worked and grade received for a toy data set consisting of
only 10 students (each circle corresponds to one student). The dashed line through the middle shows
the linear relationship between the two variables. This produces a strong Pearson correlation of r = .91.
However, the interesting thing to note here is that there's actually a perfect monotonic relationship
between the two variables. In this toy example, increasing the hours worked always increases the grade
received, as illustrated by the solid line. This is reflected in a Spearman correlation of p = 1. With
such a small data set, however, it's an open question as to which version better describes the actual
relationship involved.

That is, if student 1 works more hours than student 2, then we can guarantee that student 1 will get
the better grade. That's not what a correlation of r = .91 says at all.

How should we address this? Actually, it's really easy. If we're looking for ordinal relationships all
we have to do is treat the data as if it were ordinal scale! So, instead of measuring effort in terms
of “hours worked”, lets rank all 10 of our students in order of hours worked. That is, student 1 did
the least work out of anyone (2 hours) so they get the lowest rank (rank = 1). Student 4 was the
next laziest, putting in only 6 hours of work over the whole semester, so they get the next lowest rank
(rank = 2). Notice that I'm using “rank =1" to mean “low rank”. Sometimes in everyday language
we talk about “rank = 1" to mean “top rank” rather than "bottom rank”. So be careful, you can rank
“from smallest value to largest value” (i.e., small equals rank 1) or you can rank “from largest value
to smallest value” (i.e., large equals rank 1). In this case, I'm ranking from smallest to largest, but as
it's really easy to forget which way you set things up you have to put a bit of effort into remembering!
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Okay, so let's have a look at our students when we rank them from worst to best in terms of effort
and reward:

rank (hours worked) rank (grade received)
student 1 1 1
student 2 10 10
student 3 6 6
student 4 2 2
student 5 3 3
student 6 5 5
student 7 4 4
student 8 8 8
student 9 7 7
student 10 9 9

Hmm. These are identical. The student who put in the most effort got the best grade, the student
with the least effort got the worst grade, etc. As the table above shows, these two rankings are
identical, so if we now correlate them we get a perfect relationship, with a correlation of 1.0.

What we've just re-invented is Spearman’s rank order correlation, usually denoted p to distinguish
it from the Pearson correlation r. We can calculate Spearman’s p using JASP simply by clicking the
‘Spearman’ check box in the ‘Correlation Matrix' screen.

11.2
Scatterplots

Scatterplots are a simple but effective tool for visualising the relationship between two variables, like
we saw with the figures in the section on correlation (Section 11.1). It's this latter application that
we usually have in mind when we use the term “scatterplot”. In this kind of plot each observation
corresponds to one dot. The horizontal location of the dot plots the value of the observation on one
variable, and the vertical location displays its value on the other variable. In many situations you don't
really have a clear opinions about what the causal relationship is (e.g., does A cause B, or does B
cause A, or does some other variable C control both A and B). If that's the case, it doesn't really
matter which variable you plot on the x-axis and which one you plot on the y-axis. However, in many
situations you do have a pretty strong idea which variable you think is most likely to be causal, or
at least you have some suspicions in that direction. If so, then it's conventional to plot the cause
variable on the x-axis, and the effect variable on the y-axis. With that in mind, let's look at how to
draw scatterplots in JASP, using the same parenthood data set (i.e. parenthood.csv) that | used
when introducing correlations.

Suppose my goal is to draw a scatterplot displaying the relationship between the amount of sleep
that | get (dan.sleep) and how grumpy | am the next day (dan.grump). The way in which we can
use JASP to get this plot is to use the ‘Plots’ option under the ‘Regression’ - ‘Correlation Matrix’
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Figure 11.8: Scatterplot via the ‘Correlation Matrix’ method in JASP

button, giving us the output shown in Figure 11.8. Note that JASP draws a line through the points,
we'll come onto this a bit later in Section (11.3). Plotting a scatterplot in this way also allow you to
specify ‘Densities for variables’, which adds a histogram and density curve showing how the data in
each variable is distributed. You can also specify the ‘Statistics’ option, which provides an estimate
of the correlation along with a 95% confidence interval.

11.3

What is a linear regression model?

Stripped to its bare essentials, linear regression models are basically a slightly fancier version of the
Pearson correlation (Section 11.1), though as we'll see regression models are much more powerful

tools.
Since the basic ideas in regression are closely tied to correlation, we'll return to the
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parenthood.csv file that we were using to illustrate how correlations work. Recall that, in this data
set we were trying to find out why Dan is so very grumpy all the time and our working hypothesis was
that I'm not getting enough sleep. We drew some scatterplots to help us examine the relationship
between the amount of sleep | get and my grumpiness the following day, as in Figure 11.8, and as
we saw previously this corresponds to a correlation of r = —.90, but what we find ourselves secretly
imagining is something that looks closer to Figure 11.9a. That is, we mentally draw a straight line
through the middle of the data. In statistics, this line that we're drawing is called a regression line.
Notice that, since we're not idiots, the regression line goes through the middle of the data. We don't
find ourselves imagining anything like the rather silly plot shown in Figure 11.9b.

The Best Fitting Regression Line Not The Best Fitting Regression Line!

90

My grumpiness (0-100)
My grumpiness (0-100)

My sleep (hours) My sleep (hours)
(a) (b)

Figure 11.9: Panel a shows the sleep-grumpiness scatterplot from Figure 11.8 with the best fitting
regression line drawn over the top. Not surprisingly, the line goes through the middle of the data. In

contrast, panel b shows the same data, but with a very poor choice of regression line drawn over the
top.

This is not highly surprising. The line that I've drawn in Figure 11.9b doesn't “fit" the data very
well, so it doesn't make a lot of sense to propose it as a way of summarising the data, right? This is
a very simple observation to make, but it turns out to be very powerful when we start trying to wrap
just a little bit of maths around it. To do so, let's start with a refresher of some high school maths.
The formula for a straight line is usually written like this

y=a+ bx

Or, at least, that's what it was when | went to high school all those years ago. The two variables
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are x and y, and we have two coefficients, a and b.?> The coefficient a represents the y-intercept
of the line, and coefficient b represents the slope of the line. Digging further back into our decaying
memories of high school (sorry, for some of us high school was a long time ago), we remember that
the intercept is interpreted as “the value of y that you get when x = 0". Similarly, a slope of b means
that if you increase the x-value by 1 unit, then the y-value goes up by b units, and a negative slope
means that the y-value would go down rather than up. Ah yes, it's all coming back to me now. Now
that we've remembered that it should come as no surprise to discover that we use the exact same
formula for a regression line. If Y is the outcome variable (the DV) and X is the predictor variable
(the 1V), then the formula that describes our regression is written like this

\A/,‘Zbo-l-le,'

Hmm. Looks like the same formula, but there's some extra frilly bits in this version. Let's make sure
we understand them. Firstly, notice that I've written X; and Y; rather than just plain old X and Y.
This is because we want to remember that we're dealing with actual data. In this equation, X; is the
value of predictor variable for the ith observation (i.e., the number of hours of sleep that | got on day
i of my little study), and Y; is the corresponding value of the outcome variable (i.e., my grumpiness
on that day). And although | haven't said so explicitly in the equation, what we're assuming is that
this formula works for all observations in the data set (i.e., for all /). Secondly, notice that | wrote
\A/,- and not Y;. This is because we want to make the distinction between the actual data Y;, and the
estimate Y; (i.e., the prediction that our regression line is making). Thirdly, | changed the letters used
to describe the coefficients from a and b to by and b;. That's just the way that statisticians like to
refer to the coefficients in a regression model. I've no idea why they chose b, but that's what they
did. In any case bg always refers to the intercept term, and by refers to the slope.

Excellent, excellent. Next, | can’t help but notice that, regardless of whether we're talking about
the good regression line or the bad one, the data don't fall perfectly on the line. Or, to say it another
way, the data Y; are not identical to the predictions of the regression model \7, Since statisticians
love to attach letters, names and numbers to everything, let's refer to the difference between the
model prediction and that actual data point as a residual, and we'll refer to it as €;.> Written using
mathematics, the residuals are defined as

gi=Y =Y
which in turn means that we can write down the complete linear regression model as

Yi=bo+ b1 X, + €
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Figure 11.10: A depiction of the residuals associated with the best fitting regression line (panel a),
and the residuals associated with a poor regression line (panel b). The residuals are much smaller for
the good regression line. Again, this is no surprise given that the good line is the one that goes right
through the middle of the data.

11.4

Estimating a linear regression model

Okay, now let’s redraw our pictures but this time I'll add some lines to show the size of the residual
for all observations. When the regression line is good, our residuals (the lengths of the solid black
lines) all look pretty small, as shown in Figure 11.10a, but when the regression line is a bad one the
residuals are a lot larger, as you can see from looking at Figure 11.10b. Hmm. Maybe what we "want”
in a regression model is small residuals. Yes, that does seem to make sense. In fact, | think I'll go
so far as to say that the "best fitting” regression line is the one that has the smallest residuals. Or,
better yet, since statisticians seem to like to take squares of everything why not say that:

The estimated regression coefficients, Bo and El, are those that minimise the sum of the
squared residuals, which we could either write as >..(Y; — Y;)2 or as Y., ;2.

Yes, yes that sounds even better. And since I've indented it like that, it probably means that this is the

2Also sometimes written as y = mx + b where m is the slope coefficient and b is the intercept (constant) coefficient.
3The € symbol is the Greek letter epsilon. It’'s traditional to use €; or e to denote a residual.
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right answer. And since this is the right answer, it's probably worth making a note of the fact that our
regression coefficients are estimates (we're trying to guess the parameters that describe a population!),
which is why I've added the little hats, so that we get by and by rather than by and by. Finally, |
should also note that, since there's actually more than one way to estimate a regression model, the
more technical name for this estimation process is ordinary least squares (OLS) regression.

At this point, we now have a concrete definition for what counts as our “best” choice of regression
coefficients, by and by. The natural question to ask next is, if our optimal regression coefficients are
those that minimise the sum squared residuals, how do we find these wonderful numbers? The actual
answer to this question is complicated and doesn't help you understand the logic of regression.* This
time I'm going to let you off the hook. Instead of showing you the long and tedious way first and
then “revealing” the wonderful shortcut that JASP provides, let's cut straight to the chase and just
use JASP to do all the heavy lifting.

11.4.1 Linear regression in JASP

To run my linear regression, open up the ‘Regression’ - ‘Linear Regression’ analysis in JASP, using
the parenthood.csv data file. Then specify dan.grump as the ‘Dependent Variable' and dan.sleep as
the variable entered in the ‘Covariates’ box. This gives the results shown in Figure 11.11, showing an
intercept by = 125.956 and the slope by = —8.937. In other words, the best-fitting regression line
that | plotted in Figure 11.9 has this formula:

Y = 125.956 + (—8.937 X))

11.4.2 Interpreting the estimated model

The most important thing to be able to understand is how to interpret these coefficients. Let's start
with by, the slope. If we remember the definition of the slope, a regression coefficient of b; = —8.94
means that if | increase X; by 1, then I'm decreasing Y; by 8.94. That is, each additional hour of sleep
that | gain will improve my mood, reducing my grumpiness by 8.94 grumpiness points. What about
the intercept? Well, since Bo corresponds to “the expected value of Y; when X; equals 0", it's pretty
straightforward. It implies that if | get zero hours of sleep (X; = 0) then my grumpiness will go off

4Or at least, I'm assuming that it doesn’t help most people. But on the off chance that someone reading this is a
proper kung fu master of linear algebra (and to be fair, | always have a few of these people in my intro stats class), it
will help you to know that the solution to the estimation problem turns out to be b = (X/X)’lx/y, where b is a vector
containing the estimated regression coefficients, X is the “design matrix" that contains the predictor variables (plus an
additional column containing all ones; strictly X is a matrix of the regressors, but | haven't discussed the distinction yet),
and y is a vector containing the outcome variable. For everyone else, this isn't exactly helpful and can be downright
scary. However, since quite a few things in linear regression can be written in linear algebra terms, you'll see a bunch of
footnotes like this one in this chapter. If you can follow the maths in them, great. If not, ignore it.

- 266 -



Mad™ L7 [T LXT SgT A

Descriptives T-Tests ANOVA Regression  Frequencies Factor

¥ Linear Regression © 0 © Results

\ Dependent Variable . .
\ D P Linear Regression

, baby.sleep
» day

\ dan.grump

Method
Enter v

Model Summary

Model R R? Adjusted R* RMSE

Covariates

1 0.903 0.816 0.814 4.332
% dan.sleep

ANOVA

Model Sum of Squares df Mean Square F [

1 Regression 8159.876 1 8159.876  434.906  <.001
Residual 1838.714 98 18.762
Total 9998.590 99

WLS Weights (optional)

Coefficients

Model Unstandardized  Standard Error  Standardized t P

» Model
1 (Intercept) 125.956 3.016 41.762 <.001
» Statistics dan.sleep -8.937 0.429 -0.903 -20.854  <.001

» Options

» Plots

Figure 11.11: A JASP screenshot showing a simple linear regression analysis.

the scale, to an insane value of (Y; = 125.96). Best to be avoided, | think.

11.5

Multiple linear regression

The simple linear regression model that we've discussed up to this point assumes that there’s a single
predictor variable that you're interested in, in this case dan.sleep. In fact, up to this point every
statistical tool that we've talked about has assumed that your analysis uses one predictor variable and
one outcome variable. However, in many (perhaps most) research projects you actually have multiple
predictors that you want to examine. If so, it would be nice to be able to extend the linear regression
framework to be able to include multiple predictors. Perhaps some kind of multiple regression model
would be in order?

Multiple regression is conceptually very simple. All we do is add more terms to our regression
equation. Let's suppose that we've got two variables that we're interested in; perhaps we want to use
both dan.sleep and baby.sleep to predict the dan.grump variable. As before, we let Y; refer to my
grumpiness on the /-th day. But now we have two X variables: the first corresponding to the amount
of sleep | got and the second corresponding to the amount of sleep my son got. So we'll let X;; refer
to the hours | slept on the /-th day and Xj> refers to the hours that the baby slept on that day. If so,
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then we can write our regression model like this:
Yi = bg + b1 Xj1 + boXjo + €

As before, €; is the residual associated with the /-th observation, ; = Y; — \A/, In this model, we now
have three coefficients that need to be estimated: bg is the intercept, by is the coefficient associated
with my sleep, and b, is the coefficient associated with my son’s sleep. However, although the number
of coefficients that need to be estimated has changed, the basic idea of how the estimation works
is unchanged: our estimated coefficients 130, 131 and 52 are those that minimise the sum squared
residuals.

11.5.1 Doing it in JASP

Multiple regression in JASP is no different to simple regression. All we have to do is add addi-
tional variables to the ‘Covariates’ box in JASP. For example, if we want to use both dan.sleep and
baby.sleep as predictors in our attempt to explain why I'm so grumpy, then move baby.sleep across
into the ‘Covariates’ box alongside dan.sleep. By default, JASP assumes that the model should
include an intercept. The coefficients we get this time are:

(Intercept) dan.sleep  baby.sleep
125.966 -8.950 0.011

The coefficient associated with dan.sleep is quite large, suggesting that every hour of sleep | lose
makes me a lot grumpier. However, the coefficient for baby.sleep is very small, suggesting that it
doesn't really matter how much sleep my son gets. What matters as far as my grumpiness goes is
how much sleep / get. To get a sense of what this multiple regression model looks like, Figure 11.12
shows a 3D plot that plots all three variables, along with the regression model itself.

11.5.2 Formula for the general case

The equation that | gave above shows you what a multiple regression model looks like when you
include two predictors. Not surprisingly, then, if you want more than two predictors all you have to
do is add more X terms and more b coefficients. In other words, if you have K predictor variables
in the model then the regression equation looks like this

K
Yi = bg + (Z kaik> + €

k=1
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Figure 11.12: A 3D visualisation of a multiple regression model. There are two predictors in the
model, dan.sleep and baby.sleep and the outcome variable is dan.grump. Together, these three
variables form a 3D space. Each observation (dot) is a point in this space. In much the same way
that a simple linear regression model forms a line in 2D space, this multiple regression model forms
a plane in 3D space. When we estimate the regression coefficients what we're trying to do is find a
plane that is as close to all the blue dots as possible.
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11.6

Quantifying the fit of the regression model

So we now know how to estimate the coefficients of a linear regression model. The problem is, we
don't yet know if this regression model is any good. For example, the regression model that we
constructed in section 11.4.1 claims that every hour of sleep will improve my mood by quite a lot, but
it might just be rubbish. Remember, the regression model only produces a prediction Y; about what
my mood is like, but my actual mood is Yj. If these two are very close, then the regression model has
done a good job. If they are very different, then it has done a bad job.

11.6.1 The R? value

Once again, let's wrap a little bit of mathematics around this. Firstly, we've got the sum of the
squared residuals

SSres = Z(YI - %)2
i
which we would hope to be pretty small. Specifically, what we'd like is for it to be very small in
comparison to the total variability in the outcome variable

SStor = Y (Vi = V)

!

While we're here, let’s calculate these values ourselves, not by hand though. | have constructed a JASP
file called parenthood_rsquared.jasp, which you can open from the book’s data folder. You'll notice
that this data file has 5 variables; two of them are the original dan.sleep and dan.grump variables that
we've already been using. The other three are calculated variables:

1. Y.pred is the predicted value of grumpiness using the regression equation. It is calculated using
the formula '125.97 + (-8.94 * dan.sleep)’.

2. resid is a measure of the residual error g¢; = Y; — \A/, which represents the difference between our
predicted value of grumpiness and our actual value of grumpiness. It is calculated using the formula
‘dan.grump - Y.pred'.

3. sq.resid is the square of the residual, and is calculated using the formula ‘resid2’.

Since 5S,¢s is the sum of these squared residuals, we can use JASP to find the sum of the sq.resid
column. Simply click ‘Descriptives’ - ‘Descriptive Statistics’ and move sq.resid to the ‘Variables' box.
You'll then need to select ‘'Sum’ from the ‘Statistics’ options below. This should give you a value of
‘1838.714".

Wonderful. A big number that doesn't mean very much. Still, let's forge boldly onwards anyway
and calculate the total sum of squares as well. That's also pretty simple. Let's calculate S$S;o+

similarly. This time, you'll need to create a new computed column. Click the “+" symbol to start. For
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‘Name', let's type ‘sq.resid2’ (you'll see why in a minute). Be sure to select the “R" button, then
click ‘Create Column’. For your R code, type the following (see Figure 11.13):

(dan.grump - mean(dan.grump)) "2

Then click ‘Compute column’. This will produce a column of values that are themselves residuals,
but they are residuals (errors) against a really bad predictive model; that is, the model that just
predicts grumpiness using the mean of all grumpiness values. To find $S¢o¢, we need to compute the
sum of sq.resid2, just like we did above.

v I v I¢"Y Y = v v
- M B [ |~ o= P -
- Descriptives T-Tests ANOVA Regression Frequencies Factor

Computed Column: sq.resid2

#Enter your R code here :)

(dan.grump - mean(dan.grump))”2

ﬁ Compute column o X

Y [N dansleep |4, dangrump | % fiY.pred % S resid @, e saresid “ S sq.resid2 +
1 7.59 56 58.1242 -2.12417 4.5121 59.4441
2 7.91 60 55.2643 4.73567 22.4266 13.7641
2 5.14 82 80.0198 1.98018 3.92111 334.524
4 7.71 55 57.0517 -2.05173 4.2096 75.8641
5 6.68 67 66.2568 0.74316 0.552287 10.8241
6 5.99 72 72.4234 -0.42337 0.179242 68.7241
7 8.19 53 52.762 0.23803 0.0566583 114.704
8 7.19 60 61.699 -1.69897 2.8865 13.7641
9 7.4 60 59.8222 0.1778 0.0316128 13.7641
10 6.58 71 67.1505 3.84946 14.8183 53.1441
11 6.49 72 67.9549 4.04513 16.3631 68.7241
12 6.27 65 69.921 -4.92101 24.2163 1.6641
13 5.95 74 72.7809 1.21915 1.48633 105.884
14 6.65 67 66.525 0.47505 0.225673 10.8241
15 6.41 66 68.6698 -2.66983 7.12799 5.2441

A A £33 £9. £9 3848 =0.38479 0148063 2729841

Figure 11.13: A JASP screenshot showing a residual computation in R.

This should give you a value of '9998.590". Hmm. Well, it's a much bigger number than the
last one, so this does suggest that our regression model was making good predictions (that is, it has
greatly reduced the residual error compared to the model that uses the mean as a single predictor).
But it's not very interpretable.
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Perhaps we can fix this. What we'd like to do is to convert these two fairly meaningless numbers
into one number. A nice, interpretable number, which for no particular reason we'll call R2. What we
would like is for the value of R? to be equal to 1 if the regression model makes no errors in predicting
the data. In other words, if it turns out that the residual errors are zero. That is, if SS,es = 0 then
we expect R?2 = 1. Similarly, if the model is completely useless, we would like R? to be equal to 0.
What do | mean by “useless”? Tempting as it is to demand that the regression model move out of the
house, cut its hair and get a real job, I'm probably going to have to pick a more practical definition.
In this case, all | mean is that the residual sum of squares is no smaller than the total sum of squares,
SS,es = SStor. Wait, why don't we do exactly that? The formula that provides us with our R? value

is pretty simple to write down,
SSres

RP=1-
SStot

and equally simple to calculate by hand:

SSres

 SSiot
1838.714

~0998.590
—1-0.1839

= 0.8161.

R%? =1

The R? value, sometimes called the coefficient of determination® has a simple interpretation: it is
the proportion of the variance in the outcome variable that can be accounted for by the predictor. So,
in this case the fact that we have obtained R? = .8161 means that the predictor (dan.sleep) explains
81.61% of the variance in the outcome (dan.grump).

Naturally, you don't actually need to do all these computations by hand if you want to obtain the
R? value for your regression model. It turns out that JASP gives you this by default! Take a look at
Figure 11.11 again; notice that in the top table labeled ‘Model Summary’, the value of R? is already
there!

11.6.2 The relationship between regression and correlation

At this point we can revisit my earlier claim that regression, in this very simple form that |'ve
discussed so far, is basically the same thing as a correlation. Previously, we used the symbol r to
denote a Pearson correlation. Might there be some relationship between the value of the correlation
coefficient r and the R? value from linear regression? Of course there is: the squared correlation r? is
identical to the R? value for a linear regression with only a single predictor. In other words, running a

5And by “sometimes” | mean “almost never”. In practice everyone just calls it *“R-squared”.
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Pearson correlation is more or less equivalent to running a linear regression model that uses only one
predictor variable.

11.6.3 The adjusted R? value

One final thing to point out before moving on. It's quite common for people to report a slightly
different measure of model performance, known as “adjusted R%". The motivation behind calculating
the adjusted R? value is the observation that adding more predictors into the model will always cause
the R? value to increase (or at least not decrease).

The adjusted R? value introduces a slight change to the calculation, as follows. For a regression
model with K predictors, fit to a data set containing N observations, the adjusted R? is:

SSres N1
SStor  N—K—1

myR2=1—<

This adjustment is an attempt to take the degrees of freedom into account. The big advantage of
the adjusted R? value is that when you add more predictors to the model, the adjusted R? value will
only increase if the new variables improve the model performance more than you'd expect by chance.
The big disadvantage is that the adjusted R? value can't be interpreted in the elegant way that R?
can. R? has a simple interpretation as the proportion of variance in the outcome variable that is
explained by the regression model. To my knowledge, no equivalent interpretation exists for adjusted
R2.

An obvious question then is whether you should report R? or adjusted R2. This is probably a
matter of personal preference. If you care more about interpretability, then R? is better. If you care
more about correcting for bias, then adjusted R? is probably better. Speaking just for myself, | prefer
R?. My feeling is that it's more important to be able to interpret your measure of model performance.
Besides, as we'll see in Section 11.7, if you're worried that the improvement in R? that you get by
adding a predictor is just due to chance and not because it's a better model, well we've got hypothesis
tests for that.

11.7

Hypothesis tests for regression models

So far we've talked about what a regression model is, how the coefficients of a regression model
are estimated, and how we quantify the performance of the model (the last of these, incidentally, is
basically our measure of effect size). The next thing we need to talk about is hypothesis tests. There
are two different (but related) kinds of hypothesis tests that we need to talk about: those in which we
test whether the regression model as a whole is performing significantly better than a null model, and
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those in which we test whether a particular regression coefficient is significantly different from zero.

11.7.1 Testing the model as a whole

Okay, suppose you've estimated your regression model. The first hypothesis test you might try is
the null hypothesis that there is no relationship between the predictors and the outcome, and the
alternative hypothesis that the data are distributed in exactly the way that the regression model
predicts.

Formally, our “null model” corresponds to the fairly trivial “regression” model in which we include 0
predictors and only include the intercept term by:

Ho Y= by + €

If our regression model has K predictors, the “alternative model” is described using the usual formula
for a multiple regression model:

K
Hi:Yj = bo+ (Z ka,k) +€;
k=1

How can we test these two hypotheses against each other? The trick is to understand that it's
possible to divide up the total variance SSto+ into the sum of the residual variance SS,es and the
regression model variance SS,04. I'll skip over the technicalities, since we'll get to that later when
we look at ANOVA in Chapter 12. But just note that

S'Smod = SStot - SSres

And we can convert the sums of squares into mean squares by dividing by the degrees of freedom.

SS
MSmod = 7o
mo
SS
MSreS dfreS
res

So, how many degrees of freedom do we have? As you might expect the df associated with the
model is closely tied to the number of predictors that we've included. In fact, it turns out that
dfmoqd = K. For the residuals the total degrees of freedom is dfes = N — K — 1.
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Now that we've got our mean square values we can calculate an F-statistic like this

F— I\/lsmod
RASres

and the degrees of freedom associated with this are K and N — K — 1.

We'll see much more of the F statistic in Chapter 12, but for now just know that we can interpret
large F values as indicating that the null hypothesis is performing poorly in comparison to the alternative
hypothesis. In a moment I'll show you how to do the test in JASP the easy way, but first let's have a
look at the tests for the individual regression coefficients.

11.7.2 Tests for individual coefficients

The F-test that we've just introduced is useful for checking that the model as a whole is performing
better than chance. If your regression model doesn’t produce a significant result for the F-test then
you probably don’t have a very good regression model (or, quite possibly, you don't have very good
data). However, while failing this test is a pretty strong indicator that the model has problems, passing
the test (i.e., rejecting the null) doesn’t imply that the model is good! Why is that, you might be
wondering? The answer to that can be found by looking at the coefficients for the multiple regression
model we have already looked at in section 11.5 above, where the coefficients we got were:

(Intercept) dan.sleep  baby.sleep
125.966 -8.950 0.011

| can't help but notice that the estimated regression coefficient for the baby.sleep variable is tiny
(0.011), relative to the value that we get for dan.sleep (-8.950). Given that these two variables are
absolutely on the same scale (they're both measured in "hours slept”), | find this illuminating. In fact,
I'm beginning to suspect that it's really only the amount of sleep that / get that matters in order to
predict my grumpiness.

We can re-use a hypothesis test that we discussed earlier, the t-test. The test that we're interested
in has a null hypothesis that the true regression coefficient is zero (b = 0), which is to be tested against
the alternative hypothesis that it isn't (b # 0). That is:

Hoi b=20
Hli b#0

How can we test this? Well, if the central limit theorem is kind to us we might be able to guess
that the sampling distribution of b, the estimated regression coefficient, is a normal distribution with
mean centred on b. What that would mean is that if the null hypothesis were true, then the sampling
distribution of b has mean zero and unknown standard deviation. Assuming that we can come up with

a good estimate for the standard error of the regression coefficient, se(b), then we're in luck. That's
exactly the situation for which we introduced the one-sample t-test way back in Chapter 10. So let’s
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define a t-statistic like this ~
b

t= =

se(b)

I'll skip over the reasons why, but our degrees of freedom in this case are df = N — K — 1. Irritatingly,
the estimate of the standard error of the regression coefficient, se(b), is not as easy to calculate
as the standard error of the mean that we used for the simpler t-tests in Chapter 10. In fact, the
formula is somewhat ugly, and not terribly helpful to look at.° For our purposes it's sufficient to
point out that the standard error of the estimated regression coefficient depends on both the predictor
and outcome variables, and it is somewhat sensitive to violations of the homogeneity of variance

assumption (discussed shortly).

In any case, this t-statistic can be interpreted in the same way as the t-statistics that we discussed
in Chapter 10. Assuming that you have a two-sided alternative (i.e., you don't really care if b > 0 or
b < 0), then it's the extreme values of t (i.e., a lot less than zero or a lot greater than zero) that
suggest that you should reject the null hypothesis.

11.7.3 Running the hypothesis tests in JASP

To compute all of the statistics that we have talked about so far, all you need to do is make sure
the relevant options are checked in JASP and then run the regression. Fortunately, these options are
usually selected by default. As you can see in Figure 11.14, we get a whole bunch of useful output.

The *Coefficients’ at the bottom of the JASP analysis results shown in 11.14 provides the coeffi-
cients of the regression model. Each row in this table refers to one of the coefficients in the regression
model. The first row is the intercept term, and the later ones look at each of the predictors. The
columns give you all of the relevant information. The first column (labeled ‘Unstandardized’) is the
actual estimate of b (e.g., 125.966 for the intercept, and -8.950 for the dan.sleep predictor). The
second column is the standard error estimate &p. The third column provides a ‘Standardized’ regres-
sion coefficient; more about this in Section 11.8. The fourth column gives you the t-statistic, and it’s
worth noticing that in this table t = b/se(b) every time. Finally, the last column gives you the actual
p-value for each of these tests.’

The only thing that the coefficients table itself doesn't list is the degrees of freedom used in the t-
test, which is always N— K —1 and is listed in the table in the middle of the output, labelled ‘ANOVA'.
We can see from this table that the model performs significantly better than you'd expect by chance
(F(2,97) = 215.238, p < .001), which isn't all that surprising: the R?> = .816 value indicate that
the regression model accounts for 81.6% of the variability in the outcome measure. However, when

5For advanced readers only. The vector of residuals is e = y —Xb. For K predictors plus the intercept, the estimated
residual variance is 6% = €’e/(N — K — 1). The estimated covariance matrix of the coefficients is 6%(X'X) ™!, the main
diagonal of which is se(b), our estimated standard errors.

"Note that, although JASP has done multiple tests here, it hasn’t done any sort of correction for multiple comparisons.
These are standard one-sample t-tests with a two-sided alternative. If you want to make corrections for multiple tests,

you need to do that yourself.
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Figure 11.14: A JASP screenshot showing a multiple linear regression analysis, including relevant
hypothesis tests.

we look back up at the t-tests for each of the individual coefficients, we can see that the baby.sleep
variable seems to have no significant effect. All the work in this model is being done by the dan.sleep
variable. Taken together, these results suggest that this regression model is actually the wrong model
for the data. You'd probably be better off dropping the baby.sleep predictor entirely. In other words,
the simple regression model that we started with is likely the better model.

11.8

Regarding regression coefficients

Before moving on to discuss the assumptions underlying linear regression and what you can do to
check if they're being met, there's two more topics | want to briefly discuss, both of which relate to
the regression coefficients. The first thing to talk about is calculating confidence intervals for the
coefficients. After that, I'll discuss the somewhat murky question of how to determine which predictor
is most important.
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11.8.1 Confidence intervals for the coefficients

Like any population parameter, the regression coefficients b cannot be estimated with complete pre-
cision from a sample of data; that's part of why we need hypothesis tests. Given this, it’s quite useful
to be able to report confidence intervals that capture our uncertainty about the true value of b. This
is especially useful when the research question focuses heavily on an attempt to find out how strongly
variable X is related to variable Y/, since in those situations the interest is primarily in the regression
weight b.

Fortunately, confidence intervals for the regression weights can be constructed in the usual fashion

Cl(b) = b+ (terie x se(h))
where se(B) is the standard error of the regression coefficient, and t.,;; is the relevant critical value
of the appropriate t distribution. For instance, if it's a 95% confidence interval that we want, then
the critical value is the 97.5th quantile of a t distribution with N — K — 1 degrees of freedom. In
other words, this is basically the same approach to calculating confidence intervals that we've used
throughout.

In JASP we can display confidence intervals by selecting ‘Confidence intervals' from the ‘Statistics’
menu in our regression model dialog. The default is 95% Cl, but we could easily choose something
different, say 99%, if that is what we decided on.

11.8.2 Calculating standardised regression coefficients

One more thing that you might want to do is to calculate “standardised” regression coefficients,
often denoted 3. The rationale behind standardised coefficients goes like this. In a lot of situations,
your variables are on fundamentally different scales. Suppose, for example, my regression model aims
to predict people’s IQ scores using their educational attainment (number of years of education) and
their income as predictors. Obviously, educational attainment and income are not on the same scales.
The number of years of schooling might only vary by 10s of years, whereas income can vary by 10,000s
of dollars (or more). The units of measurement have a big influence on the regression coefficients. The
b coefficients only make sense when interpreted in light of the units, both of the predictor variables and
the outcome variable. This makes it very difficult to compare the coefficients of different predictors.
Yet there are situations where you really do want to make comparisons between different coefficients.
Specifically, you might want some kind of standard measure of which predictors have the strongest
relationship to the outcome. This is what standardised coefficients aim to do.

The basic idea is quite simple; the standardised coefficients are the coefficients that you would
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have obtained if you'd converted all the variables to z-scores before running the regression.® The idea
here is that, by converting all the predictors to z-scores, they all go into the regression on the same
scale, thereby removing the problem of having variables on different scales. Regardless of what the
original variables were, a B value of 1 means that an increase in the predictor of 1 standard deviation
will produce a corresponding 1 standard deviation increase in the outcome variable. Therefore, if
variable A has a larger absolute value of 3 than variable B, it is deemed to have a stronger relationship
with the outcome. Or at least that's the idea. It's worth being a little cautious here, since this does
rely very heavily on the assumption that “a 1 standard deviation change” is fundamentally the same
kind of thing for all variables. It's not always obvious that this is true.

Leaving aside the interpretation issues, let's look at how it's calculated. What you could do is
standardise all the variables yourself and then run a regression, but there's a much simpler way to
do it. As it turns out, the B coefficient for a predictor X and outcome Y has a very simple formula,
namely

ox

Bx = bx x —

oy
where ox is the standard deviation of the predictor, and oy is the standard deviation of the outcome
variable Y. This makes matters a lot simpler.

To make things even simpler, JASP computes the 8 coefficients by default, as you can see the third
column of the 'Coefficients’ table in Figure 11.14. This clearly shows that the dan.sleep variable has
a much stronger effect than the baby.sleep variable. However, this is a perfect example of a situation
where it would probably make sense to use the original coefficients b rather than the standardised
coefficients 8. After all, my sleep and the baby's sleep are already on the same scale: number of hours
slept. Why complicate matters by converting these to z-scores?

11.9

Assumptions of regression

The linear regression model that I've been discussing relies on several assumptions. In Section 11.10
we'll talk a lot more about how to check that these assumptions are being met, but first let's have a
look at each of them.

e Normality. Like many of the models in statistics, basic simple or multiple linear regression relies
on an assumption of normality. Specifically, it assumes that the residuals are normally distributed.
It's actually okay if the predictors X and the outcome Y are non-normal, so long as the residuals
€ are normal. See Section 11.10.3.

8Strictly, you standardise all the regressors. That is, every “thing” that has a regression coefficient associated with
it in the model. For the regression models that |'ve talked about so far, each predictor variable maps onto exactly one
regressor, and vice versa. However, that's not actually true in general and we'll see some examples of this in Chapter 13.
But, for now we don't need to care too much about this distinction.
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11.10

Linearity. A pretty fundamental assumption of the linear regression model is that the relationship
between X and Y actually is linear! Regardless of whether it's a simple regression or a multiple
regression, we assume that the relationships involved are linear.

Homogeneity of variance. Strictly speaking, the regression model assumes that each residual
g; is generated from a normal distribution with mean 0, and (more importantly for the current
purposes) with a standard deviation ¢ that is the same for every single residual. In practice, it's
impossible to test the assumption that every residual is identically distributed. Instead, what we
care about is that the standard deviation of the residual is the same for all values of Y, and (if
we're being especially paranoid) all values of every predictor X in the model.

Uncorrelated predictors. The idea here is that, in a multiple regression model, you don't want
your predictors to be too strongly correlated with each other. This isn't “technically” an as-
sumption of the regression model, but in practice it's required. Predictors that are too strongly
correlated with each other (referred to as “collinearity”) can cause problems when evaluating the
model.

Residuals are independent of each other. This is really just a “catch all” assumption, to the
effect that “there’'s nothing else funny going on in the residuals”. If there is something weird
(e.g., the residuals all depend heavily on some other unmeasured variable) going on, it might
screw things up.

No “bad” outliers. Again, not actually a technical assumption of the model (or rather, it's sort
of implied by all the others), but there is an implicit assumption that your regression model
isn't being too strongly influenced by one or two anomalous data points because this raises
questions about the adequacy of the model and the trustworthiness of the data in some cases.
See Section 11.10.2.

Model checking

The main focus of this section is regression diagnostics, a term that refers to the art of checking
that the assumptions of your regression model have been met, figuring out how to fix the model if the
assumptions are violated, and generally to check that nothing “funny” is going on. | refer to this as the
“art” of model checking with good reason. It's not easy, and while there are a lot of fairly standardised
tools that you can use to diagnose and maybe even cure the problems that ail your model (if there
are any, that is!), you really do need to exercise a certain amount of judgement when doing this. It's
easy to get lost in all the details of checking this thing or that thing, and it's quite exhausting to try
to remember what all the different things are. This has the very nasty side effect that a lot of people
get frustrated when trying to learn all the tools, so instead they decide not to do any model checking.
This is a bit of a worry!
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In this section | describe several different things you can do to check that your regression model is
doing what it's supposed to. It doesn’t cover the full space of things you could do, but it's still much
more detailed than what | see a lot of people doing in practice, and even | don't usually cover all of
this in my intro stats class either. However, | do think it's important that you get a sense of what
tools are at your disposal, so I'll try to introduce a bunch of them here. Finally, | should note that
this section draws quite heavily from the Fox and Weisberg (2011) text, the book associated with the
car package that is used to conduct regression analysis in R. The car package is notable for providing
some excellent tools for regression diagnostics, and the book itself talks about them in an admirably
clear fashion. | don't want to sound too gushy about it, but | do think that Fox et al. (2011) is well
worth reading, even if some of the advanced diagnostic techniques are only available in R and not
JASP.

11.10.1 Three kinds of residuals

The majority of regression diagnostics revolve around looking at the residuals, and by now you've
probably formed a sufficiently pessimistic theory of statistics to be able to guess that, precisely because
of the fact that we care a lot about the residuals, there are several different kinds of residual that
we might consider. In particular, the following three kinds of residuals are referred to in this section:
“ordinary residuals”, “standardised residuals”’, and "Studentised residuals’. There is a fourth kind that
you'll see referred to in some of the Figures, and that’s the “Pearson residual’. However, for the models

that we're talking about in this chapter the Pearson residual is identical to the ordinary residual.

The first and simplest kind of residuals that we care about are ordinary residuals. These are the
actual raw residuals that I've been talking about throughout this chapter so far. The ordinary residual
is just the difference between the fitted value \A/, and the observed value Y;. |'ve been using the notation
€; to refer to the i-th ordinary residual, and darn it, I'm going to stick to it. With this in mind, we
have the very simple equation

=Y -V

This is of course what we saw earlier, and unless | specifically refer to some other kind of residual,
this is the one I'm talking about. So there’s nothing new here. | just wanted to repeat myself. One
drawback to using ordinary residuals is that they're always on a different scale, depending on what the
outcome variable is and how good the regression model is. That is, unless you've decided to run a
regression model without an intercept term, the ordinary residuals will have mean 0 but the variance is
different for every regression. In a lot of contexts, especially where you're only interested in the pattern
of the residuals and not their actual values, it's convenient to estimate the standardised residuals,
which are normalised in such a way as to have standard deviation 1.

The way we calculate these is to divide the ordinary residual by an estimate of the (population)
standard deviation of these residuals. For technical reasons, mumble mumble, the formula for this
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’ Ej
€= ——m——
" 61— h;
where & in this context is the estimated population standard deviation of the ordinary residuals, and
h; is the “hat value” of the jth observation. | haven't explained hat values to you yet (but have no
fear,? it's coming shortly), so this won't make a lot of sense. For now, it's enough to interpret the
standardised residuals as if we'd converted the ordinary residuals to z-scores. In fact, that is more

or less the truth, it's just that we're being a bit fancier.

?Or have no hope, as the case may be.

The third kind of residuals are Studentised residuals (also called “jackknifed residuals”) and they're
even fancier than standardised residuals. Again, the idea is to take the ordinary residual and divide it
by some quantity in order to estimate some standardised notion of the residual.

The formula for doing the calculations this time is subtly different

€
6‘(_;)\/ 1—h

Notice that our estimate of the standard deviation here is written 6(_;. What this corresponds to is
the estimate of the residual standard deviation that you would have obtained if you just deleted the
ith observation from the data set. This sounds like the sort of thing that would be a nightmare to
calculate, since it seems to be saying that you have to run N new regression models (even a modern
computer might grumble a bit at that, especially if you've got a large data set). Fortunately,
some terribly clever person has shown that this standard deviation estimate is actually given by the

following equation:
A L IN—K—-1-¢?
SN TN TNk =2

%
€j

Isn't that a pip?

Before moving on, | should point out that you don't often need to obtain these residuals yourself,
even though they are at the heart of almost all regression diagnostics. Most of the time the various
options that provide the diagnostics, or assumption checks, will take care of these calculations for
you. Even so, it's always nice to know how to actually get hold of these things yourself in case you
ever need to do something non-standard.

11.10.2 Three kinds of anomalous data

One danger that you can run into with linear regression models is that your analysis might be
disproportionately sensitive to a smallish number of “unusual” or “anomalous” observations. | discussed
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Figure 11.15: An illustration of outliers. The dotted lines plot the regression line that would have
been estimated without the anomalous observation included, and the corresponding residual (i.e.,
the Studentised residual). The solid line shows the regression line with the anomalous observation
included. The outlier has an unusual value on the outcome (y axis location) but not the predictor (x
axis location), and lies a long way from the regression line.

this idea previously in Section 5.2 in the context of discussing the outliers that get automatically
identified by the boxplot option under ‘Exploration’ - ‘Descriptives’, but this time we need to be much
more precise. In the context of linear regression, there are three conceptually distinct ways in which
an observation might be called “anomalous”. All three are interesting, but they have rather different
implications for your analysis.

The first kind of unusual observation is an outlier. The definition of an outlier (in this context) is
an observation that is very different from what the regression model predicts. An example is shown
in Figure 11.15. In practice, we operationalise this concept by saying that an outlier is an observation
that has a very large Studentised residual, €. Outliers are interesting: a big outlier might correspond
to junk data, e.g., the variables might have been recorded incorrectly in the data set, or some other
defect may be detectable. Note that you shouldn’'t throw an observation away just because it's an
outlier. But the fact that it's an outlier is often a cue to look more closely at that case and try to
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Figure 11.16: An illustration of high leverage points. The anomalous observation in this case is
unusual both in terms of the predictor (x axis) and the outcome (y axis), but this unusualness is highly
consistent with the pattern of correlations that exists among the other observations. The observation
falls very close to the regression line and does not distort it.

find out why it's so different.

The second way in which an observation can be unusual is if it has high leverage, which happens
when the observation is very different from all the other observations. This doesn't necessarily have
to correspond to a large residual. If the observation happens to be unusual on all variables in precisely
the same way, it can actually lie very close to the regression line. An example of this is shown in
Figure 11.16. The leverage of an observation is operationalised in terms of its hat value, usually
written h;. The formula for the hat value is rather complicated® but its interpretation is not: h; is a
measure of the extent to which the j-th observation is “in control” of where the regression line ends

°Again, for the linear algebra fanatics: the “hat matrix” is defined to be that matrix H that converts the vector of
observed values y into a vector of fitted values g, such that § = Hy. The name comes from the fact that this is the matrix
that “puts a hat on y”. The hat value of the i-th observation is the i-th diagonal element of this matrix (so technically
| should be writing it as hj; rather than h;). Oh, and in case you care, here's how it's calculated: H = X(X’X)"'X'.
Pretty, isn't it?
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up going.

In general, if an observation lies far away from the other ones in terms of the predictor variables,
it will have a large hat value (as a rough guide, high leverage is when the hat value is more than 2-3
times the average; and note that the sum of the hat values is constrained to be equal to K +1). High
leverage points are also worth looking at in more detail, but they're much less likely to be a cause for
concern unless they are also outliers.

This brings us to our third measure of unusualness, the influence of an observation. A high
influence observation is an outlier that has high leverage. That is, it is an observation that is very
different to all the other ones in some respect, and also lies a long way from the regression line. This
is illustrated in Figure 11.17. Notice the contrast to the previous two figures. Outliers don’'t move
the regression line much and neither do high leverage points. But something that is both an outlier
and has high leverage, well that has a big effect on the regression line. That's why we call these

Outcome
|

b

High influence

T T T T T

Predictor

Figure 11.17: An illustration of high influence points. In this case, the anomalous observation is
highly unusual on the predictor variable (x axis), and falls a long way from the regression line. As
a consequence, the regression line is highly distorted, even though (in this case) the anomalous
observation is entirely typical in terms of the outcome variable (y axis).
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points high influence, and it's why they're the biggest worry. We operationalise influence in terms of
a measure known as Cook’s distance.

g*? h;
D= —1—x !

K+1 1—h

Notice that this is a multiplication of something that measures the outlier-ness of the observation
(the bit on the left), and something that measures the leverage of the observation (the bit on the

right).

In order to have a large Cook’s distance an observation must be a fairly substantial outlier and
have high leverage. As a rough guide, Cook'’s distance greater than 1 is often considered large (that’s
what | typically use as a quick and dirty rule).

In JASP, information about Cook's distance can be calculated by clicking on ‘Casewise diagnostics’
under the ‘Statistics’ menu. There are two ways to visualize these data. First, you can select "All’
to see Cook's distance for each case (i.e., row of data); see Figure 11.18. Alternatively, you can opt
to display only those cases for which Cook’s distance is greater than some threshold; the default in
JASP is 1. In either case, you can see that we have no data cases that are beyond this threshold.

Casewise Diagnostics

Case Number Std. Residual dan.grump Predicted Value Residual Cook's Distance

1 -0.497 56.000 58.140 -2.140 0.002
2 1.104 60.000 55.292 4.708 0.017
3 0.464 82.000 80.045 1.955 0.005
4 -0.477 55.000 57.060 —-2.060 0.001
5 0.168 67.000 66.281 0.719 0.000
6 -0.095 72.000 72.407 -0.407 0.000
7 0.053 53.000 52.773 0.227 0.000
8 -0.393 60.000 61.700 -1.700 0.001
9 0.047 60.000 59.797 0.203 0.000
10 0.890 71.000 67.148 3.852 0.003
11 0.959 72.000 68.001 3.999 0.027
12 =1.139 65.000 69.912 —4.912 0.008

Figure 11.18: JASP output showing Cook's distance for each case/row of data

An obvious question to ask next is, if you do have large values of Cook's distance what should
you do? As always, there's no hard and fast rule. Probably the first thing to do is to try running
the regression with the outlier with the greatest Cook's distance!® excluded and see what happens
to the model performance and to the regression coefficients. If they really are substantially different,
it's time to start digging into your data set and your notes that you no doubt were scribbling as your
ran your study. Try to figure out why the point is so different. If you start to become convinced that
this one data point is badly distorting your results then you might consider excluding it, but that's

031though currently there isn't a very easy way to do this in JASP, so a more powerful regression program such as
the car package in R would be better for this more advanced analysis
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less than ideal unless you have a solid explanation for why this particular case is qualitatively different
from the others and therefore deserves to be handled separately.

11.10.3 Checking the normality of the residuals

Like many of the statistical tools we've discussed in this book, regression models rely on a normality
assumption. In this case, we assume that the residuals are normally distributed. The first thing we can
do is draw a QQ-plot in JASP via the ‘Plots’ - ‘Q-Q plot standardized residuals’ option. The output
is shown in Figure 11.19, showing the standardised residuals plotted as a function of their theoretical
quantiles according to the regression model.

Q-Q Plot Standardized Residuals
3

2_

—

Standardized Residuals
o

Theoretical Quantiles

Figure 11.19: Plot of the theoretical quantiles according to the model, against the quantiles of the
standardised residuals, produced in JASP.

Another thing we should check is the relationship between the fitted values and the residuals
themselves. We can get JASP to do this using the various ‘Residuals Plots' choices, each of which
provides a scatterplot for the predictor variables, the outcome variable, and the fitted values against
residuals; see Figure 11.20. In these plots we are looking for a fairly uniform distribution of ‘dots’,
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with no clear bunching or patterning of the ‘dots’. Looking at these plots, there is nothing particularly
worrying as the dots are fairly evenly spread across the whole plot. There may be a little bit of
non-uniformity in plot (b), but it is not a strong deviation and probably not worth worrying about.
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Figure 11.20: Residuals plots produced in JASP

If we were worried, then in a lot of cases the solution to this problem (and many others) is to
transform one or more of the variables. Transformations are beyond the scope of this text.

11.11

Model selection

One fairly major problem that remains is the problem of “model selection”. That is, if we have a data
set that contains several variables, which ones should we include as predictors, and which ones should
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we not include? In other words, we have a problem of variable selection. In general, model selection is
a complex business but it's made somewhat simpler if we restrict ourselves to the problem of choosing
a subset of the variables that ought to be included in the model. Nevertheless, I'm not going to try
covering even this reduced topic in a lot of detail. Instead, I'll talk about two broad principles that
you need to think about, and then discuss one concrete tool to help you select a subset of variables
to include in your model. First, the two principles:

e |t's nice to have an actual substantive basis for your choices. That is, in a lot of situations you
the researcher have good reasons to pick out a smallish number of possible regression models
that are of theoretical interest. These models will have a sensible interpretation in the context
of your field. Never discount the importance of this. Statistics serves the scientific process, not
the other way around.

e To the extent that your choices rely on statistical inference, there is a trade off between simplicity
and goodness of fit. As you add more predictors to the model you make it more complex. Each
predictor adds a new free parameter (i.e., a new regression coefficient), and each new parameter
increases the model's capacity to “absorb” random variations. So the goodness of fit (e.g., R?)
continues to rise, sometimes trivially or by chance, as you add more predictors no matter what.
If you want your model to be able to generalise well to new observations you need to avoid
throwing in too many variables.

This latter principle is often referred to as Ockham’s razor and is often summarised in terms of the
following pithy saying: do not multiply entities beyond necessity. In this context, it means don't chuck
in a bunch of largely irrelevant predictors just to boost your R2. Hmm. Yeah, the original was better.

In any case, what we need is an actual mathematical criterion that will implement the qualitative
principle behind Ockham’s razor in the context of selecting a regression model. As it turns out there
are several possibilities. The one that I'll talk about is the Akaike information criterion (AIC; Akaike
1974); currently, it is not part of JASP's standard output, but it is quite easy to compute with the
model fit data that JASP does produce.

In the context of a linear regression model, the AIC for a model that has n observations and K
predictor variables (not including the intercept) can be computed? as

aStrictly speaking, this formula is not completely correct. Akaike's original definition was in terms of something
called a maximum likelihood estimate for the model, and as such, there are some other terms that appear in the
computation. However, many of them don't depend on the model, and given that the purpose of the AIC is to
compare models, these terms will be present in all models and will mathematically “wash out”. Thus, | am presenting
a ‘bare bones’ version of the formula that is sufficient for our purposes.

Here's the basic principle behind using AIC for model comparison: the smaller the AIC value, the
better the model performance. If we ignore the low level details it's fairly obvious what the AIC does.
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On the left we have a term that decreases as the model predictions get better; on the right we have
a term that increases as the model complexity increases. The best model is the one that both fits
the data well (small SS,¢s, left hand side) and uses as few predictors as possible (small K, right hand
side). In short, this is a simple mathematical implementation of Ockham's razor.

Let's demonstrate how AIC can be used to compare the two regression models we have computed
in this chapter. Consider first the regression model with only one predictor: dan.sleep (see Figure
11.11). In this model, we have n = 100 observations, K = 1 predictor, and SS,es = 1838.714. Thus,

AICy = nIn(SS,es) + 2K
1001n(1838.714) + 2(1)
— 753.68

Now consider the second model using two predictors: dan.sleep and baby.sleep (see Figure
11.14). In this model, we have n = 100 observations, K = 2 predictors, and SS,es = 1838.685. This
gives us

1001n(1838.685) + 2(2)
= 755.68.

Since AIC; < AlCs, this tells us that Model 1 is the better fit, which confirms our intuitions.
Adding baby.sleep doesn't add much to the model fit, but it increases model complexity. AlC balances
these two requirements; the penalty for adding an additional parameter is not outweighed by the meager
improvement in model fit.

11.12

Summary

e Want to know how strong the relationship is between two variables? Calculate a correlation
(Section 11.1).

Drawing scatterplots (Section 11.2).

Basic ideas in linear regression and how regression models are estimated (Sections 11.3 and
11.4).

Multiple linear regression (Section 11.5).

Measuring the overall performance of a regression model using R? (Section 11.6).
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Hypothesis tests for regression models (Section 11.7)

Calculating confidence intervals for regression coefficients and standardised coefficients (Sec-
tion 11.8).

The assumptions of regression (Section 11.9) and how to check them (Section 11.10).
Selecting a regression model (Section 11.11).
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